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Abstract

Within this thesis an implementation of Featherstone’s algorithm, also known as the ar-
ticulated body algorithm, was developed. The implementation is data-oriented and first-
of-its-kind based on the conducted research. Its computational performance appears to be
competitive with PhysX 4.1, one of the physics engines integrated into the leading develop-
ment platforms for real-time 3D experiences, Unity. The collected data suggests that the
data-oriented implementation is ten times faster than the simulation step of PhysX within
Unity. Among the possibilities for future work is improving the correctness of the imple-
mentation. The tests showed that when simulating a double pendulums with a time step
of 1/60 of a second the mechanical system gains energy over time instead of maintaining
constant energy. Data about performance and accuracy was collected in a series of eight
tests, which may hold valuable insights to the possible source of the implementation error.
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Chapter 1

Introduction

Simulation is an essential tool in many fields such as engineering, robotics, and video game
development. Dynamic simulation is a sub-field of simulation that involves the process
of modelling and analysing the behaviour of a system over time, taking into account its
changing variables and interactions. Examples of dynamic simulation include simulating
the movement of vehicles in traffic, predicting the behaviour of a pendulum, or modelling
the motion of fluids in a container. A sub-field of dynamic simulation focused on modelling
and analysing the motion of rigid bodies (bodies that do not deform or change shape) is
called rigid body dynamics. An important challenge in rigid body dynamics is solving the
forward dynamics problem, which involves determining the resulting motion of a system
given a set of applied forces or torques. This thesis is focused on solving the forward
dynamics problem of rigid bodies connected with joints forming so-called articulated bodies
and more specifically kinematic chains like a pendulum or a robotic arm.

Forward dynamics is a key problem in rigid body simulations. The literature describes
a large variety of formulations of dynamic systems i.e. ways of formulating the equations of
motion for a dynamic system. Despite the high number of different available formulations,
they all generally fall into two categories depending on how they model constraints.

The first category is reduced-coordinate formulations also called minimal-coordinate or
generalised coordinate formulations. These take a system with m degrees of freedom and a
set of constraints that removes ¢ of those degrees of freedom and parameterise the remaining
degrees of freedom using a reduced set of n coordinates (n = m—c). Due to the way reduced-
coordinate formulations model the system, the constraints are always inherently satisfied.
For example, if we model a bead hanging on a string as a simple pendulum with a reduced-
coordinate formulation the state of the mechanical system would be defined by only one
coordinate e.g. the angular displacement of the string from its equilibrium position. The
most significant advantages of reduced-coordinate formulations are: that they often lead
to more concise equations of motion, the reduced number of coordinates leads to lower
computational complexity, and because only the essential degrees of freedom are captured,
the simulations are more stable and robust. Reduced-coordinate formulations also have the
following disadvantages: by using fewer coordinates, some details of the system’s motion
may be lost, and incorporating constraints into the reduced coordinates can be complex,
especially when dealing with intricate or nonlinear constraints.

The second category is maximal-coordinate formulations which describe a system with
its original m degrees of freedom. In systems modelled this way, the constraints must
be explicitly maintained by introducing additional forces into the system. For example,
if we would model the same example of a bead on a string as in the previous example



with a maximal-coordinate formulation, we might treat the bead as a rigid body with 6
degrees of freedom to which we would have to apply appropriate forces to maintain the
constraints which a string would impose upon it (i.e. maintain a constant length of the
string and prevent the bead from falling to the ground). Maximal-coordinate representation
provides a comprehensive and detailed description of the system’s motion. It can capture
the positions, orientations, and interactions of all individual components, offering a high
level of detail. Maximal coordinate representation can handle various types of constraints
more easily. On the other hand, describing a system using maximal coordinates introduces
a larger number of variables, making the equations of motion more complex and increasing
the computational burden. Also, the increased number of variables in maximal coordinate
representation requires more memory to store and process the system’s state.

There is a popular method using a reduced-coordinate formulation for computing the
forward dynamics of kinematic chains and trees called Featherstone’s algorithm also known
as the Articulated body algorithm. This thesis focuses on implementing this algorithm with
a data-oriented paradigm as it could yield better performance than the existing implemen-
tations using an object-oriented paradigm. The developed implementation will be tested
and compared against PhysX 4.1 which is integrated into Unity, the real-time 3D develop-
ment platform that will be used as an environment for the implementation and testing of
the developed solution.

Data-oriented design (DOD) is an alternative approach to object-oriented design (OOD)
that focuses on optimising the storage and processing of data. DOD can typically offer
higher performance by storing data of the same type contiguously in memory, and after-
wards processing this data in bulk to exploit CPU caching and prefetching.

1.1 Problem Statement

Featherstone’s algorithm, also known as the articulated body method, is a well-established
approach to solving the forward dynamics problem. Currently, to our best knowledge, there
does not exist a purely data-oriented implementation of Featherstone’s algorithm, mean-
ing that there might be room for implementing a better-performing implementation than
the ones currently available. A secondary problem is that the existing resources covering
Featherstone’s algorithm lack some details that are necessary for it’s implementation.

1.2 The Goal of This Thesis

This thesis aims to implement Featherstone’s algorithm in a purely data-oriented way and
evaluate the differences in performance and accuracy when compared to an existing im-
plementation. Furthermore, this thesis aspires to provide an explanation of the algorithm
with the details necessary for its implementation by a graduate student of computer science.
The implementation will be done in Unity using C# and Unity’s data-oriented technology
stack (DOTS). The algorithm and its implementation will be described within this thesis
and the implementation will be attached as part of the submission.



1.3 Structure

Chapter 2 summarises the current state of rigid body simulation and explains the role of
Featherstone’s algorithm within this field. Chapter 3 breaks down and explains Feather-
stone’s algorithm. Chapter 4 covers the principles of data-oriented design and contrasts it
with object-oriented design. Chapter 5 describes the developed data-oriented implementa-
tion of Featherstone’s algorithm. Chapter 6 presents the results of the comparison between
the data-oriented implementation and an existing solution. Chapter 7 discusses the results
of the performed tests and lists possibilities for future work. Chapter 8 concludes this thesis
by reflecting on its results and contributions.



Chapter 2

Rigid Body Simulation

Rigid body simulation is a fundamental technique used in computer graphics, robotics, and
engineering to model and analyse the motion and interactions of solid objects. In engi-
neering literature, it is often referred to as multibody dynamics. This technique plays an
essential role in a wide range of applications, from creating realistic animations in movies
and providing interactive animations in video games to designing and controlling robotic
systems. A lot of literature is available on this topic across different fields and there is
no one way of classifying the existing methods, there are even some overlapping names of
different techniques which can cause confusion. Therefore, this chapter gives an overview
of the popular simulation paradigms and ways of classifying the existing methods. Special
attention is paid to forward dynamics methods because Featherstone’s method which is
the focus of this thesis falls within this category. This chapter aims to put Featherstone’s
algorithm in the context of other known methods by highlighting its advantages and lim-
itations. An excellent resource with more in-depth material is the book ,Physics-Based
Animation“ by K. Erleben et al. [g].

2.1 Taxonomy

There are different ways of classifying rigid body simulation methods depending on what
properties we examine. Since this paper studies methods computable on a computer which
always has a limited amount of resources, each method has to choose a balance between
accuracy, performance and stability. Accuracy means how close is the behaviour of the
simulated system compared to a real system. Performance refers to the computational cost
of running the simulation. The stability of a simulation means how easy is it to make the
simulation behave in a non-realistic way e.g. by using bodies with a very big mass difference.
Some methods such as analytical methods are able to compute very accurate results but at
the cost of not running in real-time or not being applicable in every situation. For example
in movie production a longer processing time for the final visual effects is acceptable. On
the other hand, in computer games, the player usually expects an interactive experience
running at 60 frames per second. For such interactive scenarios, iterative methods such
as the projected Gauss-Seidel method are common. To be more precise, it is common to
mix different simulation paradigms in modern simulation tools to cover a broader spectrum
of user needs and work around the limitations of the individual methods. The following
sections describe the common ways of classifying simulation methods based on different



properties. For a more comprehensive state-of-the-art report please see the publication by
J. Bender et al. [5] which is the latest report of this kind to our best knowledge.

2.1.1 Kinematic vs. Dynamic Methods

On the highest level, rigid body simulations can be split into two big groups, kinematic
and dynamic methods. Both of which can be further divided into forward and inverse
methods [8]. Kinematic methods compute the positions and movement of bodies without
taking forces into account, they use the knowledge of a system’s geometry.

Forward kinematics, computes motion based on a starting point and parameters of the
system. An example of forward kinematics is computing the motion of a robotic arm with
two joints, a shoulder joint and an elbow joint (each with 1 degree of freedom). The starting
point would be the starting configuration of the arm and the algorithm would compute the
motion of the arm based on the angular displacement of the joints.

Inverse kinematics computes the opposite. Considering the same example an inverse
kinematics algorithm would compute the necessary angular displacement of each joint to
make the robotic arm reach a desired point in space. These algorithms are often used in
games e.g. to procedurally animate a character’s hands and torso to make them follow an
object like a gun or a sword

Rigid body dynamics algorithms are generally more complicated except for trivial cases
because they are physically based and have to take the various forces and torques acting
upon bodies into consideration.

Forward dynamics computes the motion resulting from applying specified forces to a
system in a starting position. In our robotic arm example, this means that we would
compute the movement of the arm from its starting configuration by exerting specified
forces on the arm through e.g. a gravitational force, torques of the motors in the arm’s
joints etc.

Inverse dynamics is the last category within this type of classification of rigid body
simulation methods. It computes the forces that must be imposed on the bodies in the
system to reach a desired configuration. In the example of the robotic arm, this would
mean calculating the torques that the motors in the joints must exert in order to move the
robotic arm into a target position.

Featherstone’s algorithm is a forward dynamics algorithm as it computes the motion of
bodies connected with joints based on the forces acting upon them.

2.1.2 Direct vs. Iterative Methods

Another major way rigid body simulation methods can be classified is depending on what
numerical method they use. The early simulation methods often used direct methods as
they are accurate, but their computational cost does not scale well with the number of
simulated bodies. With the increasing demand for interactive simulations iterative methods
became popular and are often found in contemporary game engines.

Among the commonly used iterative methods are Gauss-Seidel type methods which have
a linear convergence rate. An example of this type of method is the Project Gauss-Seidel
(PGS) method. Another type of iterative methods are the Newton-type algorithms which
can provide up to a quadratic convergence rate alleviating the visual artefacts caused by
the linear convergence rate of Gauss-Seidel type methods. A disadvantage of the Newton-
type iterative methods is that its per iteration computational cost is higher then the one of
Gauss-Seidel iterative methods.



Even though iterative methods are computationally less demanding and scale well with
an increasing number of bodies they can be unstable when dealing with extreme scenarios
like high mass ratios (big differences in mass of the simulated bodies). In such specialised
cases, or when a very high accuracy is needed direct methods are preferred.

In the reviewed literature Featherstone’s algorithm is not typically classified within
these categories. Even though it does iteratively approximate the motion of an articulated
body through numeric integration, but in literature it is typically characterised by its other
qualities such us using a reduced-coordinate formulation and being recursive [5].

2.1.3 Maximal Coordinate vs. Reduced Coordinate Formulation

When it comes to classifying methods for simulating Articulated bodies i.e. structures of
rigid bodies connected by joints the existing methods can be divided into two groups. The
first group is called maximal coordinate and the second reduced coordinate formulations. The
reduced coordinate formulations are also referred to as generalised coordinate or minimal
coordinate formulations depending on the author. The main distinction between the two
types of methods is the formulations of the equations of motion. Maximal coordinate
formulations simulate rigid bodies with all of their 6 degrees of freedom. Reduced coordinate
formulations exploit the knowledge of constraints in the modelled system and reduce the
number of variables in the equations of motion. This reduction in the degrees of freedom
decreases the computational complexity of the simulation.

Examples of maximal coordinate formulation methods are the penalty force method,
Lagrange multiplier method and the impulse-based method. The penalty force method
uses the addition of external repulsive forces to the rigid bodies to reduce the violation of
constraints such as non-penetration constraints. This method is fast and easy to implement,
but does allow for visual artefacts such as joint drift or interpenetration of objects into each
other. A more accurate method is the Lagrange multiplier method which prevents the
violation of constraints. A well-known Lagrange multiplier method in computer graphics
was described by David Baraff [4]. This method can simulate articulated bodies without
loops in linear time same as Featherstone’s algorithm. The Lagrange multiplier method
is able to prevent the violation of constraints due to external forces. Unfortunately, it is
not able to prevent the violation of constraints due to other reasons such as numerical
errors. Therefore, numerical errors build up over time and lead to e.g. the breaking of the
joints in the system which is not realistic and is a major difference from the Featherstone’s
algorithm. The last above mentioned method is the impulse-based method which is similar
to the Lagrange multiplier method but it enforces constraints by computing corrective
impulses by predicting the future state of the simulation not only the current state [5].

The most well-known reduced coordinate method for simulating tree like articulated
bodies without loops is the Articulated Body Algorithm also known as Featherstone’s algo-
rithm. Instead of keeping track of all 6 degrees of freedom per rigid body in the simulation
it reduces the necessary parameters to only one per joint in the articulated body. Therefore,
the exact configuration of the articulated body e.g. a robotic arm can be precisely describe
by using only the angular displacement of each joint (assuming that all joints are revolute
i.e. hinge joints). This algorithm is computable in linear time with respect to the number
of bodies in the articulated body. It also does not suffer from joint drift which makes it
a perfect fit for robotics simulations which demand demand higher accuracy or even the
simulation of ragdolls in games who’s limbs can move with high speeds (usually causing



visual artefacts if simulated with other methods). One of the best available explanations
of this algorithm without excessive mathematical abstraction is Mirtich’s PhD thesis [1].

2.2 Collision Detection

This section briefly introduces the concept of collision detection and describes its role in
a rigid body simulation. Despite the fact that collision detection and collision response
were not implemented for Featherstone’s algorithm in this thesis it is introduced here for
completeness and to serve as a starting point for future work. The specific details of imple-
menting collision response through an impulse-based method for Featherstone’s algorithm
are described by Mirtich in chapter 5 of his PhD thesis[1].

An important part of rigid body simulations is the interaction of rigid bodies when
they come into contact with each other. Collision detection enables the simulation of these
interactions by identifying the contact points between bodies in each step of the simulation.
To better understand how collision detection interacts with the rest of the simulation see
the diagram of a typical simulation loop in figure 2.1. The first step in the simulation
loop is computing the new positions using the chosen simulation method or initialising the
positions of the bodies to predefined starting values. Next, the collisions between bodies are
identified and this data is passed to a collision response algorithm. The collision response
algorithm typically computes some additional external forces that are considered in the
equations of motion when computing the new positions for the next simulation step.

Find new
positions

Respond to
Collisions

Detect Collisions

@ ©

Figure 2.1: A typical simulation loop [8].

Collision detection often becomes the bottleneck of a simulation especially when simu-
lating a large amount of bodies with complex geometry. The problem of collision detection
appears to be a O(n?) problem, meaning that every triangle has to be checked against
every other triangle in the scene. This would be incredibly computationally expensive and
one of the first ones to address this issue was Hubbard [10] who introduced the concept
of a broad-phase and narrow-phase collision detection. In the broad phase, the pairs of
bodies that could be colliding are identified and the rest of the bodies are ,pruned” i.e.
not considered in the following phases of collision detection. The list of possibly colliding
pairs of bodies is used in the narrow phase to compute if the pair of bodies is separated,
touching or penetrating. After the narrow phase follows the contact determination phase
which computes the exact contact points which serve as an input for the collision response
algorithm. The order of the three phases is visualised in figure 2.2.
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Figure 2.2: The phases of collision detection [8].

2.2.1 Broad-Phase

The goal of this phase is to determine which pairs of objects are likely to collide and exclude
the rest from further collision detection computations. This phase dramatically reduces the
computational cost of collision detection for scenes with many bodies. The broad phase
uses the following four key principles to achieve this. The approximation principle is based
on replacing each object with a simpler shape that contains it such as a sphere, cylinder,
oriented bounding box or most commonly an axis-aligned bounding box (AABB). The
locality principle is built on the idea of not testing pairs of objects for collisions if they
are sufficiently far away from each other. Methods such as coordinate sorting and gridding
are used to determine which objects are sufficiently far away from each other. Another
principle used in the broad phase is the coherence principle which evaluates how coherent
or smoothly changing the simulation is. In the case of highly coherent simulations, it is
possible to e.g. reuse previously computed values because the simulation state has likely not
changed much since the last simulation step. The last principle is the kinematics principle.
This principle uses the data about the motion of objects to predict their future collisions
and prevent unnecessary future collision checks before the estimated time of impact.

The simplest example of a broad phase algorithm is the exhaustive search algorithm
which performs a brute-force pairwise check between all possible pairs of objects and checks
for collisions. Therefore, it has a running time of O(n?). A much better algorithm with a
linear O(n) expected running time is the sweep and prune algorithm, also called coordinate
sorting. It works with AABBs and achieves a linear running time if the endpoints of AABBs
are sorted in increasing order.

As putting a single bounding box around each object can hide too many of the details
away, spatial data structures such as spatial subdivision and boudning volume hierarchies
(BVH) can be introduced. They break each object down into multiple objects of a slightly
higher detail at every level of the data structure [8].
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2.2.2 Narrow-Phase

During the narrow phase, the list of likely colliding pairs of objects is investigated in further
detail. Each pair of objects is evaluated if the objects are separated, touching or penetrating.
Most narrow-phase algorithms return much more detailed information such as separation
distance, penetration depth, closest points etc. This information is then used for an exact
contact determination in the next phase. There are many different narrow-phase algorithms
divided into several main groups. Gilbert-Johnson—Keerthi (GJK) is a famous simplex-
based type of algorithm to mention an example of one [8].

2.2.3 Contact Determination

Contact point is a touching point between the surfaces of two objects. A contact plane is
a linear approximation of the two surfaces at the point of contact and its normal is called
the contact normal. At the point of contact between two smooth surfaces, there are two
coinciding tangent planes, but in computer simulations of polygonal models determining a
single point of contact is not that straightforward. The contact point is usually computed
from two features, one from each polyhedron as the closest point between them. A pair of
two features used for determining a contact point is called a principal contact. There are
three types of features: a vertex, an edge and a face. The combinations of these features
form six different principal contacts. Each combination of features has a dedicated method
of computing the closest point between these features. The interested reader can read
about the specific ways of computing the contact point in each scenario in Erleben’s book
Physics-Based Animation [8]. A special case of a contact point is touching contact where
the closest point between the two bodies should be exactly zero. It is known that due to
the numerical imprecision of floating point numbers, the distance will never be exactly zero.
Therefore, to counter this problem a collision envelope is used in practice. This is a slightly
larger version of the object at the same position as the original object. After subtracting
the original object from it, we are left with a field which can be used for detecting touching
contact with other objects as seen in figure 2.3.

Collision Envelope

Figure 2.3: The collision envelope used for determination of touching contact [8].
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Chapter 3

Featherstone’s Algorithm

Featherstone’s algorithm is a specialised rigid body dynamics algorithm for computing the
forward dynamics of a kinematic tree. Meaning, that the user specifies the torques of the
motors in the joints and the starting position of e.g. a robotic arm and the algorithm
simulates its movement. Featherstone’s algorithm is interesting because it has linear time
complexity with respect to the number of bodies in the kinematic tree. Due to this fact, its
performance scales well with an increasing number of rigid bodies in the chain. On top of
this, its usage of a reduced coordinate system guarantees zero joint error. As a consequence
of zero joint error, the simulation is more accurate as the attachment points of the joint
on both rigid bodies are always aligned as they would be on a real system. This chapter
is mostly based on Roy Featherstone’s book ,Rigid Body Dynamics Algorithms“ [3] and
Brian Vincent Mirtich’s PhD thesis called ,Impulse-based Dynamic Simulation of Rigid
Body Systems“ [1]. Mirtich describes Featherstone’s algorithm in a more approachable
way then Featherstone’s book and provides pseudo-code throughout his thesis. Along with
Mirtich’s thesis an implementation of a simulator Impulse has been developed, which was
not publicly available at the time of writing of this master’s thesis.

This chapter aims to describe Featherstone’s algorithm at the level of a MSc. in com-
puter science student. Within this chapter, the focus is on explaining the underlying prin-
ciples on simple examples as well as providing all details necessary for the implementation
of Featherstone’s algorithm. The algorithm computes each simulation step in three passes.
It can be used to simulate kinematic chains or kinematic trees. In section 3.3 the link and
joint indexing conventions used within this thesis are introduced. The following sections
3.4, 3.5, 3.6 describe the three passes of the algorithm for a kinematic chain. The necessary
modifications to the algorithm to expand it to kinematic trees and a floating base can be
found in Mirtich’s thesis [1].

12



3.1 Used Terminology

Different publications use slightly different terminology therefore this section aims to clarify
the terms used within this paper.

Link is a rigid body that represents a segment of the kinematic chain. Individual links
are connected together by joints. In some literature, links are also referred to as bodies.
Within this thesis the current link refers to link i and the previous link refers to link 7 — 1.

Joint connects two links together and constrains their movement. This thesis only considers
the usage of prismatic joints (also called revolute joints) that have one degree of freedom

(dof).

Kinematic chain is an arrangement of links (rigid bodies) connected to each other by
joints where each link is connected to exactly two other links except for the ends of the
chain. The kinematic chains discussed within this thesis have a grounded base link that is
static and serves as the inertial reference frame. The number of degrees of freedom of such
a chain is equal to its number of joints.

Inboard joint or link refers to the one closer to the base of the kinematic chain.
Outboard joint or link refers to the one closer to the end of the kinematic chain.

Kinematic tree has a more complex hierarchy than a kinematic chain as each link can
be attached to multiple other links by joints. The kinematic trees considered within this
thesis are ones with a static base link.

Articulated body in a kinematic chain refers to a link called the handle and its sub-chain
treated as a single rigid body. An articulated body in a kinematic tree refers to a link
(handle) and its sub-tree treated as a single rigid body.

Dynamic state of a kinematic chain or a kinematic tree in this thesis refers to the scalar
joint positions ¢; and scalar joint velocities ¢; of the joints within the kinematic structure.
This definition is adopted from Mirtich’s thesis [1].

Spatial isolated zero-acceleration (z.a.) force also called the bias force in Feather-
stone’s book [3] is the force which must be exerted by the inboard joint of a link to prevent
the link from accelerating. The adjective spatial indicates that the force vector is six-
dimensional and encapsulates both the force (linear component) and the torque (angular
component).

Spatial articulated zero-acceleration (z.a.) force is the force which must be exerted
by the inboard joint of a link (handle) to prevent it and its sub-chain from accelerating. The
adjective articulated indicates that the entire sub-chain beginning at the handle is being
considered.

Spatial isolated inertia I; of link 7 is a six-dimensional (spatial) matrix that contains the
mass matrix and the inertia tensor of the link.

13
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Spatial articulated inertia if‘ is a six-dimensional matrix representing the spatial inertia
of a handle and its sub-chain in a kinematic chain treated as a single rigid body.

Inertial reference frame, also known as an inertial frame of reference and often referred
to as simply a frame is a coordinate system within which the laws of physics hold true. An
inertial referenced frame is an idealised concept within which we assume Newton’s laws of
motion to hold ideally. Every link ¢ has a frame F; attached to it.

14



3.2 Table of Symbols

The table below lists symbols used within this chapter with their short descriptions and
whether the specific quantity is a scalar, vector or matrix. I provide this table as I wish I
had this when I started implementing Featherstone’s algorithm as it would make it easier
for me to understand the pseudo-code in Mirtich’s thesis and decide on a datatype for the
listed quantities.

Symbol Description Type

7 link and joint index ¢ 1€72,1>0
m scalar mass of link ¢ m € R
q,Gi,q;  scalar joint position, velocity, acceleration of joint i G Gi,Gi € R
Q; scalar joint actuator force/torque of link i QiR

Vi linear velocity of link 4 3x1 vector
a; linear acceleration of link 4 3x1 vector
w;j angular velocity of link ¢ 3x1 vector
Q; angular acceleration of link ¢ 3x1 vector
g gravitational acceleration 3x1 vector
u; axis vector of joint ¢ (unit vector in the direction of the axis) 3x1 vector
v; vector velocity of joint i (v; = ¢;u;) 3x1 vector
r radius vector 3x1 vector
d; vector from the axis of joint ¢ to the origin of F; 3x1 vector
Fi inertial reference frame of link 7 3x3 matrix
R rotation matrix from F;_1 to JF; 3x3 matrix
I; inertia tensor of link ¢ 3x3 matrix
M; matricized mass of link 7 (has mass on the diagonal) 3x3 matrix
¢; spatial Coriolis vector 6x1 vector
ZZA spatial articulated zero-acceleration force of link ¢ 6x1 vector
i{‘ spatial articulated inertia of link ¢ 6x1 vector
S; spatial joint axis of link ¢ 6x1 vector
a; spatial acceleration of link ¢ 6x1 vector
gX F spatial transformation from frame F to G 6x6 matrix

Table 3.1: List of symbols used in this chapter.
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3.3 Link and Joint Indexing

Featherstone’s algorithm can compute forward dynamics for kinematic chains and kinemat-
ics trees without loops. This thesis adopts the indexing convention of Mirtich’s PhD thesis
where the index of each joint and link is an integer from 0 to n. The grounded root link
that acts as the reference inertial frame is assigned the index 0. The indexing of the rest of
the links and the joints is defined separately for kinematic chains and kinematic trees.

3.3.1 Kinematic Chains

The root of the kinematic chain is assigned the index 0 and every subsequent link has an
index one higher than the previous link in the chain. Every joint in a kinematic chain has
the same index as its outboard link as seen the figure 3.1.

inboard outboard

177717717771 717777

Figure 3.1: Link and joint indexing convention for kinematic chains [1]
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3.3.2 Kinematic Trees

The indexing of joints for kinematic trees is the same as for kinematic chains where each
joint has the same index as its outboard link. The links are indexed by using the algorithm
from figure 3.2.

int numberLinks(tree, idx)

r < root link of tree
r.idx <+ idx
idx ¢ idx + 1
for each child c of r
idx = numberLinks(c, idx)

return idx

Figure 3.2: Kinematic tree link indexing algorithm [1].

The indexed tree in figure 3.3 can be obtained by running the algorithm 3.2 with the
first moving link as the value of the ,tree* argument and the index 1 as the value of the
Hidx“ argument. The indexing algorithm is recursive and it explores the tree the same way
as a DFS (depth-first search) algorithm would. The algorithm returns an index that is one
higher than the highest index of a link in the tree.

Figure 3.3: Link and joint indexing convention for kinematic trees [1].
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3.4 Pass1

The first pass of the algorithm is an outward pass from the base link to the tip of the chain
that calculates the linear velocity v;, angular velocity w;, the articulated zero acceleration
force ZA the spatial articulated inertia I; [# and the spatial Coriolis force ¢; of each link.
Vlsuahsauon of a traversal of a kinematic chaln during the first pass is shown in Figure 3.4.

Figure 3.4: Example of the first step of the traversal of a kinematic chain during Pass 1.

Figure 3.5 contains the pseudo-code for computing the first pass. It results from the
combination of Figures 4.4 and 4.7 in Mirtich’s thesis. These figures have been combined
to organise the algorithm into three passes just as Featherstone does in his book [3].

wo, Vo, O, ap 0

for i=1 ton
R + rotation matrix from F;, | to F;
r + radius vector from F; ; to F; (in F; coordinates)
w; + Rw;
vi<Rv, | + w;xr
if joint ¢ is prismatic
V; < Vi + qiu;
else /* joint i is revolute */
w;  w; + giu;

Vi< vi+gi(u; x d;)
~ / —my;
Z]\ - i8
w; X ij,’

~A 0 M;
I, «
I, 0

0
if joint ¢ is prismatic &; <
wi1 X (Wi % !‘,‘) +2w; 1 X v;

Wi_1 X V;

else C; «+
wi—1 X (Wi—1 X1;) +2w; 1 x (v; xd;) +v; X (v; x d;)

Figure 3.5: Pseudo-code for computing Pass 1 [1]).
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The input to this pass is the dynamic state that fully defines the state of the kinematic
chain. The dynamic state consists of the scalar joint position ¢; (measured as angular
displacement in radians) and the scalar joint velocity ¢; (measured as angular velocity in
radians per second) of each joint. Given that the kinematic chain of length n has n — 1
joints. The dynamic state of the system can be fully described with n — 1 pairs of scalar
values because each joint has only one degree of freedom.

Before we get into the breakdown of what the pseudo-code exactly does let us introduce
what a rotation matrix does. A rotation matrix in our case is a 3x3 matrix that represents
the orientation of a body in 3D space. The columns of a rotation matrix describe where
each of the vectors of a standard basis lands after applying the represented rotation. A
standard basis of our 3D vector space is the collection of three unit vectors in the directions
of the principal axes of our Euclidean coordinate system. Let’s look at the example rotation
matrix in Figure 3.6.

N N

[ k

P

,"-0.63‘,\| 0.77;0%| *
R =|i077, 0630 4
0 40 L0z

- v

Figure 3.6: An example of a rotation matrix. Each column represents where the corre-
sponding basis vector lands after applying the rotation.

The above example rotation matrix represents the rotation seen in Figure 3.7.

R

Figure 3.7: An intuitive way of thinking about the effects of a rotation matrix.
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Now that we have an intuitive understanding of what a rotation matrix does let us
dive into the first line of the for loop in the pseudo-code. The first pass iterates over the
links from 1 to n. At first the rotation matrix R representing the rotation from frame
Fi_1 attached to the previous link to frame F; of the current link has to be calculated.
The rotation of each frame can be represented by a 3x3 rotation matrix which transforms
vectors from the space of link 7 to world space. Therefore the rotation matrix from frame
Fi—1 to frame F; can be computed in the following way:

R=R;' xR, ; (3.2)

Illustrated on our example of a kinematic chain with three links aligned with the axes
of the world the result can simply be an identity matrix during the first simulation step as
seen in Figure 3.8.

world fo F F-e to world
0 0 O
V-'1 /] 0 0 1 0 A 1
K—R. RM 0 0 1 ! 001 R' 0 01

Figure 3.8: Example of computing R for the first simulation step of our example kinematic
chain shown in Figure 3.4.

Notice what happens when a vector is multiplied with the rotation matrix R from the
right when looking at Figure 3.8. First, the matrix R;_; transforms the vector from space
of link 7 — 1 into world space and by multiplying the result with R;l the vector is brought
from world-space into the space of link .

Next, the radius vector r spanning from the origin of F;_1 to the origin of F; is calculated
as described by equation 3.3. The radius vector is expressed in the coordinates of F;. Using
the position of the previous link p;_1, the position of the current link p; and the inverse of
the rotation matrix of the current link Ri_1 the radius vector is calculated like so:

r = 1{:1 X (pi — pifl) (33)

The difference between the positions of the two links is multiplied by the inverse of
the rotation matrix of the current link to bring it from world space to the space of link i.
The result of the radius vector in our example during the first simulation step and the first
iteration of the for loop is shown in Figure 3.9.

-4 4
v= R (a-xe) = |1

AN
vototion watrix ‘“M\ius Vec{or in
VVOr?o\ -> J:. wm?d SPA.CQ_

Figure 3.9: The result of the radius vector during the first simulation step of our example.
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The radius vector is required to be represented in the inertial reference frame JF; of the
current link ¢ in order for the algorithm to compute correct results. The importance of this
is shown in figure 3.10. It is visible how in our example the vector is the same in world
space and the space of link ¢ during the first step of the simulation but in later steps of the
simulation this does not hold anymore.

X

4 o EE]

R
~eM9 N
=N\

*
1,5
./;:mea -/:wov@e\ 7

. hay( 'éo L\'l’l l{
: the beainning of the I J
ls?me:{ion oike. vEAius vector Oaler this does not =5 4o the i franmt f:a
s cepresented the same in hold engmove mue’c‘r‘a‘"a with R:
both Froetd and Fi

Figure 3.10: Illustration of the reason why the radius vector computation contains a mul-
tiplication by R, L

The angular velocity w; of the current link is equal to the angular velocity of the previous
link rotated from the frame of the previous link to the frame of the current link.

The linear velocity of the current link v; is the sum of the linear velocity of the previous
link rotated into the current frame and the linear velocity resultant from computing the
cross product of the angular velocity of the previous link rotated into the current frame and
the radius vector r. The rotated angular velocity of the previous link is now the angular
velocity of the current link w;. This is not obvious at first glance. The computation of the
linear velocity resultant from the angular velocity of the previous link is better understood
from the diagram in Figure 3.11. The same formula as the one for computing the linear
velocity of a rolling tire of a car is used.

@VJ& N'k’*keA into +the mrrthl: foame,

by of the prevons
: Qbant from the votabion of he previous bat

I lave loci ,:‘a resw

et

ro{'&'ioh

in\\cr'\’(eo\ Pinesr Ve b
vieRvi + wixr — addition

BB

Figure 3.11: Hlustration of how the linear velocity of the current link ¢ is computed.

v
w;=R wi-A
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Now the angular and the linear velocity have been transferred from the previous to the
current link, but unless the joint has been static the velocity of the joint must also be taken
into consideration and counted into the final velocity of the current joint. In the case of a
prismatic joint (also called a slider joint) the velocity of the joint is simply added onto the
linear velocity of the current link in the direction of the axis (direction of sliding) of the
joint. In the case of a revolute joint (also called a hinge joint), the joint velocity contributes
to both the angular and the linear velocity of the current link. The unit vector u; in the
direction of the rotation axis is multiplied by the joint scalar velocity, therefore, it becomes
a vector of the angular velocity contributed to the total angular velocity of the current link
by joint 1.

The velocity contribution of joint i to the velocity of the current link is calculated as
the cross product between the axis vector u; and the vector d; spanning from joint ¢ to the
origin of F; expressed in the coordinates of F;, the cross product is afterwards scaled by
the scalar joint velocity of joint ¢ as depicted in Figure 3.12.

A‘ s COV\S&M* (V\ F'

oo (3] g senles +
B s

Figure 3.12: Depiction of the contribution of the joint scalar velocity to the final linear
velocity of the current link .

L0 e-' k
fﬂmo 1‘_0:‘:\ joil\‘k

ixov\
e —
Vi« vi+gi(u; x d;)

!

F

Both the spatial articulated zero-acceleration force Z{‘ as well as the spatial articulated
inertia i;“ of the current link is initialised to the quantity valid for the current link in
isolation despite the adjective ,articulated” in its name. After an addition to this initial
value in the second pass, the quantity becomes truly articulated i.e. expressing the value
for the current link and its sub-chain. The 3x1 linear component (upper half) of the Zf‘
z.a. force 6x1 vector is simply the opposite of the gravitational force acting upon the link
to prevent it from linear acceleration. The 3x1 angular component (lower half) of the z.a.
force 6x1 vector neutralises any angular acceleration. The lower left block of the if‘ spatial
inertia 6x6 matrix is simply the link’s inertia tensor and the upper right block of the matrix
is the matricized mass of link ¢ (a diagonal matrix containing the link’s mass scalar along
the main diagonal).
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3.5 Pass 2

The second pass is an inward pass from the end of the kinematic chain to its root as seen
in Figure 3.13.

Figure 3.13: Example of the first step of the traversal of a kinematic chain during Pass 2.

During this pass the spatial articulated inertias and zero-acceleration forces of the links
in the chain are computed as seen in the pseudo-code in figure 3.14.

for 7 =n downto 2

SA. ,aA
<A <A ~ |24 I.§§1 -
Ii—] «— Ii—] +1' 1Xi Ii - l,hAl L iXi 1

éiIi éi

<A ~ A A
5 A ~ A o |aa A, L§[Q;—8L(Z, +1¢
Z, <2, 1+ X |Z; +1; & + - ilQ: i(A i +1; &)
§;I,l- S;

Figure 3.14: Pseudo-code for computing pass 2 (from figure 4.8 in Mirtich’s thesis [1]).

To compute the first equation of the second pass we first need to compute the spatial
transformations g X r, the articulated body inertia If of the current link and the spatial joint
axis §; of joint . First, see the definition of a spatial transformation shown in Figure 3.15.

Definition 6 Let F and G be two frames, let/r)be the offset vector from the origin of F
to the origin of G (expressed in G’s coordinates), and let R be the 3 X 3 rotation matriz

transforming (non-spatial) vectors from F to G. Then the 6 x 6 spatial transformation

matrix from F to G is given by

R

With this notation, the spatial velocity transformation shown above can be written

Vg =¢Xr Vr.

Figure 3.15: Definition of a spatial transformation from Mirtich’s thesis [1].
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In our example, a concrete computed spatial transformation matrix from the current to
the previous frame is computed in Figure 3.16.

CU\TFC,V\% LD ?fC,Vl'OUgS I"'1><i :_:__‘ r"‘h"‘ of enlz A MA H
ECi AN

5% ¢y laction

1
madrix 0° wweld 4o i-A's corkinates x;=[g]
-4 _A |X
r=Ru(ex)= -1
o -4
~ g o 1 0 —a. a
—_ r= 940 a= a, 0 —ay
—ay ag 0

Figure 3.16: A computed spatial transformation from the current to the previous frame.

An example of the second required spatial transformation, one from the previous to the
current frame is computed in Figure 3.17.

Pw,vious to current "X"" (%}4 Xiea = D x;’[ﬂ

W&\ 1o i's cordinates

-1 A~
r R‘(X'X|4)=[4}2
b=
~ |9 01 0 041
r=]0 0-4( -¥-|0 o0 1
-1 1 1-1¢
o 01
~p_.|o 01
3N 44 0

Figure 3.17: A computed spatial transformation from the previous to the current frame.
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Next, to compute the spatial articulated inertia of the previous link we will need the
spatial articulated inertia I# (it is actually still the isolated inertia of the current link
computed in the first pass) which can be computed as seen in Figure 3.18.

ka‘kio\e N":N—W&&{'d I.n(r'{'ios
ot Link i COM(”-LC)\; in Poss 1

: | T o '3%
’— O M; Wi Z wx k= {}'

SP&‘HA( ;\Dl.n{' axis of ;)oin{' i

L~ —

Figure 3.18: A computed example of a spatial isolated inertia of the current link.

In order to compute the zero acceleration force of the previous link we will need the
zero acceleration force computed in the first pass as seen in Figure 3.19.

AY\

Z_e.\ro occelecation force Z

0 04 0 O
~mi=—4 W, =/[0 In.’{-iaf{%eo{ to zero I.‘= 0 046 0
0
O] 0 0 o4¢
=(-9,81 2
6 0 For o cube of mass ’f
0 0
-4 |- 1.4
Z_.‘ = = o o 0 0 T —
w; x Lw; :]x. °(':°°'“ 0 0 g w; X Iiwi
0 0 ¢ 0,46 0

Figure 3.19: A computed example of a zero-acceleration force of the current link.

Now, having computed all of the above quantities we can use the results to compute
the spatial articulated inertia and the spatial zero-acceleration force of the previous link in
the chain. The dimensions of the matrices computed as intermediate results are shown in
Figure 3.20.
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Figure 3.20: The dimensions of the matrices computed as intermediate results.

3.6 Pass 3

The third pass iterates over the links outwards, from the root to the end of the chain similar
to the first pass as seen in Figure 3.21.

Figure 3.21: Example of the first step of the traversal of a kinematic chain during Pass 1.

The third pass computes the joint accelerations and the link spatial accelerations. The
pseudo-code for performing this computation is depicted in figure 3.22.

5[) — ﬁ

for =1 ton

Qi — §'ii:i5(;: 18; 1 — §;(2,4 + i;‘évﬁ)
§'i's;

a; =;X; 14, 1 + ¢ +Gs;

Gi =

Figure 3.22: Pseudo-code for computing pass 3 (from figure 4.8 in Mirtich’s thesis [1]).

All the necessary quantities for computing the link and joint accelerations have already
been computed in the previous passes and are only combined together in the third pass.

There is one extra step that needs to be done, and that is the numerical integration of
the scalar joint accelerations of all the joints to obtain the scalar joint velocities. Thereafter,
one more round of integration is done to obtain the scalar joint positions in radians which
can then be directly used to compute the new link positions and orientations.

Mirtich used a Runge-Kutta numerical integration method with an adaptive step size in
his simulator Impulse [1]. The data-oriented implementation developed in this thesis uses
a semi-implicit Euler’s method with a fixed step size because the reference implementation
of PhysX used for comparison uses this method. The same integration method was used to
ensure a fair comparison.
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Chapter 4

Data-Oriented Design

Data-oriented design (DOD) can be viewed as a programming paradigm that focuses on
efficient data transformations i.e. storing, accessing and processing data in ways that max-
imise performance. The resources on this topic are limited compared to other more widely
adopted programming paradigms such as procedural programming, object-oriented design
(OOD), functional programming, logic programming etc. Data-oriented design is often po-
sitioned in contrast to object-oriented design, which comes from the fact that DOD-focused
solutions often look different from a typical OOD solution, but these two paradigms are
not necessarily mutually exclusive. A program can be written in an object-oriented lan-
guage but still be optimised for performance by keeping the transformations of data and
the target hardware in mind, such a program can be considered a data-oriented as well
as an object-oriented one. DOD is not an alternative to other programming paradigms, it
is rather an overarching philosophy of programming. Even though, Fabian [9] points out
that in some programming languages such as the declarative logic programming language
Prolog that don’t give the programmer control over ,how* things are done but enable only
declaring ,what“ should be done, it can be difficult or impossible to apply DOD.

The concept of data-oriented programming is not new, it has been around for decades in
one form or another. Programming is in its essence about storing, loading and transforming
data, even instructions are data occupying space in memory. The data-oriented design
was officially given its name by Noel Llopis in his September 2009 article [11] and it was
popularised by Mike Acton’s talk at the CppCon 2014 conference [13].

This chapter begins by motivating the use of data-oriented design by explaining the
discrepancy between the computation speed of modern CPU’s and the speed of loading
data from main memory. Thereafter follows an overview of the guiding principles of data-
oriented design based on the available literature and other resources such as conference
talks. The next section describes different implementations of the commonly used data-
oriented Entity Component System (ECS) framework. The final section of this chapter
introduces the Data-Oriented Technology Stack (DOTS) that is part of the Unity engine
as it is used within this thesis for the implementation of Featherstone’s algorithm.

4.1 Motivation

Over the last decades the performance of processors has increased by multiple orders of
magnitude through improving parameters such as higher clock frequency (higher amount
of processing cycles per second), higher transistor count and an increasing number of CPU
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cores. On the other hand, the improvement of data access speeds on dynamic random access
memories (DRAM) used for main memory in modern computers has been dramatically
smaller as seen in figure 4.1. Therefore, in modern systems the performance bottleneck is
usually the speed of access of data from main memory.

100,000
64-bit Intel Xeon

..a"*‘“

10,000
Intel Pentium Il }/.,T’fprocessor

1,000

Alpha 21164 I
Processor-memory
100 =
ormance
MIPS M2000 w//ﬁ pe gap
10 |

DRAM memory

Improvement

1980 1985 1990 1995 2000 2005 2010
Year

Figure 4.1: The increasing performance gap between processor speed and DRAM memory
data access time, over the time period of three decades. The speeds of CPU’s have been
evaluated by using the standard SPECint benchmark programs [7].

Even though the technology for manufacturing fast static RAM (SRAM) is known to
humanity, it is simply way too expensive to manufacture compared to the slower and much
cheaper dynamic RAM (DRAM). Due to this stark difference in price, the hierarchical
memory model was born. The hierarchical memory model is based on the assumption that
memory is often not used completely randomly and there are certain data access patterns.
Therefore the hierarchical model includes small amounts of fast SRAM cache memory used
to store data that is used most frequently and the rest of the data is stored on the cheaper
but slower DRAM (main memory). In fact, in contemporary systems, there are often
multiple layers of cache memory called layer one (L1) cache (typically located directly on
the chip of the CPU), layer two (L2) cache etc. As a rule of thumb, the closer to the CPU a
memory lies within the hierarchical memory model the faster, smaller and more expensive

it gets as seen in the figure 4.2.

‘ Solid state disk ‘

Capacity
paads

Level 3 cache

Level 2 cache
Level 1 cache|

Level 2 cache
Level 1 cache
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Figure 4.2: Visualisation of the relationship between capacity and speed (also often price
per megabyte) in the hierarchical memory model. The sub-figures (a) to (c) show the
evolution of memory architectures over time. [2].
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The hierarchy of cache memories is designed to reduce the impact of the low data access
speed from the main memory. The smallest possible chunk of memory that can be loaded
into a cache is called a cache line and has typically the size of 32, 64 or 128 bytes. Each
cache memory can only store a limited amount of cache lines determined by the cache size.
For instance, a 64-kilobyte cache memory with 64-byte lines can store 1024 cache lines.
When the CPU needs some data it first checks if the fastest L1 cache contains the cache
line with the desired data. In case of an L1 cache miss the CPU checks the L2 cache, if it
contains the desired cache line it is loaded into the L1 cache to increase the access speed
for subsequent accesses of this data, if even the L2 cache does not contain the sought after
data the CPU continues searching up the hierarchy. Whenever the CPU finds the block of
memory with the data in question, it loads it into a cache memory one level closer to the
CPU unless it is already in the closest L1 cache. As seen in figure 4.3, the difference in
speed between fetching data from main memory vs. L1 cache can be up to two orders of
magnitude!
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Figure 4.3: Comparison in data access latency between different memory types in the
hierarchical memory model [15].

Data is not read in isolation, but instead, an entire cache line of memory is loaded into
the hierarchy of fast cache memories. Therefore the most optimal way to write programs for
modern hardware is to write such programs that utilise as much of the data loaded into the
fast cache memory as possible and waste as little of the scarce cache memory as possible.
The idea of storing related data close together in memory so that it can be read into cache
and processed together efficiently is called the concept of spatial locality [12]. Another
essential fact that programmers should keep in mind to write efficient code is the concept
of temporal locality, meaning that data accessed with higher frequency has a higher chance
of being still loaded into one of the caches resulting in significantly faster data access.

The knowledge of these and other important details about modern hardware enables
DOD to yield much better-performing code than simply ignoring the hardware and only
thinking about abstractions. This possibility of noticeably increasing the performance of
software through the knowledge of hardware sparks interest in data-oriented design, espe-
cially among intermediate and experienced developers.
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4.2 Principles of Data-Oriented Design

The main goal of DOD is to maximise the performance of software through the knowledge
of hardware and actively designing software to efficiently store and transform data. DOD is
an approach to programming that encompasses a variety of principles and ideas that are not
new but are rather a reminder of first principles. This section is based on Mike Acton’s talk
at CppCon 2014 [13] and Anne Van Ede’s master’s thesis [6]. The following sub-sections
list some of the popular principles of DOD, but there are more optimisation techniques
and ideas that can be found e.g. in the book ,Data-oriented Design“ by Richard Fabian
[9] or Mike Acton’s talk. There is also ,,Game engine architecture“ by Jason Gregory, a
very well-written book that contains an approachable introduction to ,,Computer Hardware
Fundamentals® and ,Memory Architectures® in the correspondingly named chapters.

4.2.1 Data Storage Patterns Matter

It is important to choose an appropriate data structure to store data depending on the
way the data will be accessed to ensure the optimal use of cache. To demonstrate what
this means in practice imagine a city builder game where there are a lot of Al controlled
trucks driving across the streets of the city. Assume that we decide to store each truck
as a structure containing all its attributes and we store all trucks in an array as depicted
in figure 4.4. This is similar to how objects in OOP are saved in memory. In games it is
usually the case that it is necessary to evaluate the new state of all objects that are affected
by some logic. This means that we need to iterate over our array of trucks e.g. compute
their new positions. If our code needs all the data about each truck (the position, speed and
the collision box) to compute the new positions of the trucks, this is would be an optimal
storage pattern.

Array 10 Truck 1 Truck 2 Truck 3 Truck 4 Truck
Position Position Position Position Position
Speed Speed Speed Speed Speed
Collision Box Collision Box Collision Box Collision Box Collision Box

Figure 4.4: Example of an array of structures [6].

In practice, it is rarely the case that we use all the data related to an object when we
perform specific calculations such as updating a position of a truck. In a more realistic
example each truck structure would also probably contain items such as health, colour,
capacity and other unnecessary data for the computation of a truck’s new position. In
this case, the unnecessary data for a given computation will waste space in the cache line.
A more appropriate storage pattern for this case would be storing each attribute of the
trucks in a separate array as seen in the figure 4.5. Thanks to this separation, when we
compute the new positions of the trucks the cache lines will be fully populated with only
the attributes relevant for the computation resulting in a more efficient solution.
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____________________________________________________________

E Truck P Truck P Truck P Truck P Truck :
Array I[o Position ] I[w Position ] -[2 Position ] -[3 Position ] I[4 Position ]
Array [o Speed ] [1 Speed ] [2 Speed ] [3 Speed ] [4 Speed ]
Array E[OCollision Box]é E[1Co|lision Box]é E[ZCollision Box]é E[3Col|ision Box]é E[4Col|ision Box]é

Figure 4.5: Example of a structure of arrays [6].

4.2.2 Data Access Patterns Matter

Even if related data is stored completely sequentially in a contiguous memory block ex-
ploiting the principle of spatial locality the way the data is accessed can hinder or boost
performance. To illustrate this, imagine the following example. We have a grayscale image
stored as a two-dimensional array of floating point numbers and we want to increase the
brightness of the image by simply adding a constant number to each pixel. To achieve
this we have to write a loop nested in another loop to iterate through all the pixels row-
by-row or column-by-column and increment each pixel by the given amount. In most
programming languages it is more efficient to iterate through the two-dimensional array
row-by-row because that results in accessing data sequentially i.e. using all the data in
each cache line. Using the column-by-column approach instead would result in jumping be-
tween non-neighbouring memory addresses, which would waste a lot of data in each cache
line. Therefore, if we follow the philosophy of DOD we should consider these implications
of how we write code and choose the row-by-row approach as it will likely perform better.

4.2.3 Vectorization (SIMD)

Vectorization is the process where multiple operations on scalars are replaces with a single
operation on vectors (arrays) as seen in figure 4.6.

(a) Scalar Operation (b) SIMD Operation

Acl =+ B = C
0 0 Ao Bo C.
Al + Bal = C, A, B, C,

+ =

Al e = s A O G
Aa BS cl

Al+ L8] = kS

Figure 4.6: Scalar vs. SIMD operations [14].

If we store our data as a structure of arrays as described in the sub-section 4.2.1 then our
data is perfectly prepared for vectorization. Thanks to the existence of Single Instruction
Multiple Data (SIMD) instructions it is possible to process 4,8 or even 16 floating point
numbers at once (depending on hardware). The code snippet 4.1 shows a simple example
of performing four scalar operations separately.
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int af4] = {1, 3, 5, 7 };

int b[4] = { 2, 4, 6, 8 };

int c[4];

c[0] = a[0] + b[0]; // 1+ 2
cl1] = al1] + bl1]; // 3 + 4
cl2] = a[2] + b[2]; // 5 + 6
c[3] = c[3] + c[3]; // 7 + 8

Listing 4.1: Example of four separate scalar operations [14]

The following code snippet 4.2 shows the equivalent of the code in listing 4.1 optimised
to use vectorization, meaning that instead of four separate operations the computation is
performed at once by leveraging SIMD.

int a[4] __attribute__((aligned(16)))
int b[4] __attribute__((aligned(16)))
int c[4] __attribute__((aligned(16)));

{1,3,5, 7}
{2, 4, 6, 81};

__vector signed int *va = (__vector signed int *) a;
__vector signed int *vb (__vector signed int *) b;
__vector signed int *vc = (__vector signed int *) c;

*vc = vec_add(*va, *vb); // 1 +2,3+4,5+6,7+38

Listing 4.2: Example of vectorization using SIMD [14]

4.2.4 Padding

Programmers should be careful how they define new data structures and be aware of the fact
that there might be padding added in-between and even inside of data structures. This is
done mainly for two reasons. First, there might be added padding into a data structure after
data types that are not aligned with the boundaries of the natural size of the system (e.g.
32-bit system with 4-byte boundaries), padding is added in many architectures, including
x86 and ARM because accessing data that is not aligned on its natural boundary can result
in slower or even incorrect memory accesses. So a simple trick that every programmer can
use to potentially reduce the size of a data structure is to order its elements by size as seen
in figure 4.7.

3 padding bytes 3 padding bytes

F_)ﬁ F_Jﬁ
float char padding float char padding

16 bytes
2 padding bytes
—
float float char|char| padding
12 bytes

Figure 4.7: Example of rearranging a data structure to minimise its size due to unnecessary
padding (in a 32-bit system with 4-byte alignment) [6].
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Second, there might be added padding in-between data structures to prevent data split-
ting, which occurs when a single data structure is split between multiple cache lines. Data
splitting can lead to significant performance costs due to different threads or different pro-
cessors needing to synchronise if they try to modify a part of a data structure that is split
between multiple cache lines [6].

4.2.5 Prefetching

Cache prefetching is a hardware feature designed to increase the performance of cache
memory systems by speculatively predicting which data will be needed by the CPU before
it is actually needed. The data that is likely to be needed soon by the CPU is loaded into
the cache simultaneously while the CPU is still processing the current data already available
in the cache. This reduces the amount of time when the CPU is inefficiently waiting for
data to be loaded from the main memory. It is important to stick to predictable data access
and data storage patterns to take full advantage of this feature. This can be achieved e.g.
through storing homogeneous data sequentially in memory and then iterating over it [6].

4.2.6 Solve Problems You Have

Focus on solving the problems that you know you have to solve. Don’t solve for problems
that you don’t have (e.g. the most general case and possible problems in the future) because
it will likely cause more problems now and you will often waste energy on implementing an
over-complicated solution that will not be even fully utilised. Instead of focusing on writing
the most generic code possible, write simple and understandable code that can be easily
replaced if necessary [13].

4.2.7 Reality is the Problem

There is nothing wrong with taking specific hardware and specific scenarios into account
when writing code, it is not a hack to optimise an abstract problem to perform well on
a real platform. The reality of running software on real hardware is the full definition of
a problem. It is not possible to write optimised code without knowing which platform or
finite set of platforms the software will be running on. When performance is the highest
priority, the most beautiful code is likely not the right solution, but the code that runs
fastest on the target platform is [13].

4.3 The ECS Framework

The Entity Component System (ECS) is a data-oriented framework that makes writing
data-oriented code easier. This section introduces the most common implementations of
this framework. In the context of DOD, it is important to know the specific implemen-
tation of ECS as each implementation has its trade-offs and performs best under different
circumstances.

In ECS there are no objects as in OOP. In OOP objects are instances of a class that
defines both the data and the logic associated with the objects of that class. The concept
of ECS is based on the separation of data and logic. In ECS there are entities instead of
objects. Each entity is associated with a set of components that store the entity’s data. The
logic is defined separately in systems that transform the data stored in the components to
compute the new state of the entities in the system. As ECS is a data-oriented framework,
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its implementation details are important. Three popular implementations of ECS are de-
scribed in the following sub-sections. The main difference between them is how they keep
track of which component belongs to which entity.

4.3.1 Big Array-based

The Big Array implementation of ECS stores each type of component such as position,
name, collider etc. in a separate array. The components are linked to the entities that
they belong to implicitly through the index in the components array. In other words, each
component belonging to entity 0 is located in the array of the given component type at the
same index 0. Entities that do not need a specific component type simply do not store any
data at the corresponding index in the array of that component type.

This implementation is not really used in practice because it usually ends up wasting
a lot of memory in the cache lines. This happens due to the fact that in real applications
there is often a need for component types that are used only by a small percentage of
entities. Consider the following example depicted in figure 4.8, we are making a game with
soldiers and trucks. Every truck has a ,, Tire Friction“ component but soldiers do not need
this component. When a system starts computing the new positions of the trucks based on
their speed and tire friction it will need to load the array storing the tire friction components
into the cache. A lot of the cache memory will be wasted because the array of tire friction
components will contain unused allocated memory for each soldier entity. There will likely
be much more soldiers than trucks in our game, so the majority of the indices in the array
will be unused.

TruckO ii Soldier0 i Soldier1 i Truck1 i  Truck2
Array 10 Position '[1 Position 112 Position ‘{3 Position 114 Position
Speed Speed Speed Speed Speed

Array E[OCollision Box]i §[1Collision Box]é E[ZCollision Box]é ;[3Collision Box]i ;[4COIIision Box]i

Array 0Tire Friction | i[3Tire Friction ] §[4Tire Friction ]

Figure 4.8: Example of components stored in a Big Array-based ECS implementation [6].

4.3.2 Sparse Sets-based

The Sparse Sets implementation uses two arrays to store each component type. The first
array is a component array that contains tightly packed component data stored in a con-
tiguous memory block and it has as many elements as there are entities with this type of
component. The second array is a sparse index array that stores references to the compo-
nent array for each entity. In the case where an entity does not have a particular component
the slot in the index array is empty.

Let us imagine the same example as in the previous section where we are making a game
with soldiers and trucks. The position-speed components are saved together contiguously in
memory and we can access this component of each entity simply through the index directly
from the components array. To access the tire friction component of each truck we first have
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to find the actual index in the index array and then we can use it to access the component
in the components array as seen in figure 4.9.

This implementation is a little less straightforward to implement than the Big Array
approach but it utilises cache lines more efficiently. A big advantage of this implementation
is that it enables us to perform structural changes to entities in constant time, meaning
that the addition or removal of components to entities takes constant time. To add a
component we simply add it to the end of the components array and reference it from the
index array. To remove a component we delete its data from the component array and
delete the reference in the index array. In case there is an empty slot in the components
array after a component removal from an entity the next time we add a component of this
type to an entity, we simply insert it in this slot to form a contiguous memory block.

( W
Component 0 Position 1 Position 5 Position 3 Position 4 Position
Array Speed Speed Speed Speed Speed
l l l { !
Index . R
A [o Truck 0 11 Soldier 0 Iz Soldier 1 13 Truck 1 14 Truck 2 ]
\ J
f \
Cor/‘:fr‘;ry‘em[OConision Box|1Collision Box|2Collision Box|3Collision Box|4Collision Box]
Index . K
ey [o Truck 0 11 Soldier 0 Iz Soldier 1 Is Truck 1 14 Truck 2 ]
J
( \
Coffrggem[o Tire Friction | Tire Friction |2 Tire Friction |3 14 ]
-—
I = S
Index . .
e [0 Trucko 1 soidiero |2 soidier1 [3 Truckt [+ Truck2 |
\ J

Figure 4.9: Example of components stored in a Sparse Sets-based ECS implementation [6].

4.3.3 Archetype-based

In an Archetype-based implementation of ECS the entities that have the same combination
of component types are stored together in a contiguous block of memory and are said to
be of the same archetype. Because systems usually process entities with the same set of
component types together it is convenient and performant to group these entities together
in memory. The downside of this implementation is the high cost of structural changes.
If we consider making a game with trucks and soldiers once again if we remove the Tire
Friction component from a truck entity, its archetype would change and it would be moved in
memory over to the archetype currently containing soldiers as seen in Figure 4.10. Because
the archetype of entities can change at any time we do not typically give names to specific
archetypes or entities. When we want to perform some data transformation we simply
query all the entities that match a given set of components in our system instead of using
an archetype name such as ,, Truck® or a ,,Soldier”.
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Figure 4.10: Example of components stored in an archetype-based ECS implementation [6].

4.4 Unity’s Data Oriented Technology Stack

Within the practical part of this thesis, the Unity Editor and Unity’s Data Oriented Technol-
ogy Stack (DOTS) were used to develop a data-oriented implementation of Featherstone’s
algorithm as described in chapter 5. This section briefly introduces Unity’s DOTS and
specifically its implementation of an ECS framework.

Unity’s DOTS is a collection of tools enabling programmers to write high-performance
data-oriented code easier while providing a safety net protecting them from the common
pitfalls of concurrent programming'. DOTS consists of three main parts. The first part is
an Archetype-based ECS framework making it easier to start writing data-oriented code
without having to worry about the smallest details. The second part is the Burst compiler
that takes advantage of the sequential layout of related data thanks to the ECS framework
and heavily optimises code through automatic vectorization, function inlining and mem-
ory access optimisation. The Burst compiler is also able to target a variety of platforms
and removes the necessity of writing platform-specific code manually. The third and last
major part of DOTS is the C# job system which makes it easier and safer to schedule
code to run on multiple threads in parallel and also simplifies handling dependencies and
synchronisation between jobs.

4.4.1 Unity’s ECS Implementation

In Unity’s implementation of ECS, each entity lives within a world and has its unique ID
and version number. The entity’s ID is an index into an array of entity metadata and the
version number indicates how many times the entity has been recycled after deletion. To
be able to look up entities within a world, each world has an entity manager storing an
array of entity metadata. Each element of this array contains a pointer to a chunk, which
is a 16KB block of memory of a single archetype, and an index within the chunk. Each
chunk contains an array of entity IDs and an array for each component type. To look up
the components of a specific entity we would first visit the index of the entity’s ID in the
metadata array, then follow the chunk pointer and read the data at the index within the
chunk in each component array [16].

You can read more about Unity’s DOTS here: https://unity.com/dots
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Chapter 5

Implementation

A major part of this master’s thesis is a data-oriented implementation of Featherstone’s
algorithm. My implementation is developed in the C# programming language within the
real-time 3D development tool Unity '. More importantly, Unity’s Data-Oriented Technol-
ogy Stack (DOTS) ? including the Entity Component System (ECS) data-oriented frame-
work was leveraged to enable building a performant solution. My implementation uses the
data-oriented framework enabling easy structuring of the code into entities, components
and systems. Unity’s numerics library is also utilised to avoid re-implementing standard
matrix operations. The data-oriented implementation of Featherstone’s algorithm itself is
my original contribution and is based on my hand-computed breakdown of the algorithm
which I based on reputable literature [3] [1]. To the best of my knowledge, my implemen-
tation of Featherstone’s algorithm is the only purely data-oriented implementation of this
algorithm at the time of writing this thesis and can hopefully serve as a stepping stone for
future data-oriented implementations of this algorithm.

5.1 Used Technology

When developing a physics simulation it is very useful to be able to visualize the results
of the algorithm to be able to evaluate its correctness and help with debugging. Since the
scope of this thesis is already ambitious the real-time 3D development tool Unity was chosen
to provide a convenient and easy way to render 3D objects to represent a kinematic chain.
Besides the 3D rendering functionality, Unity also provides a data-oriented technology stack
that enables easier and safer development of data-oriented code. Another great benefit
of choosing Unity as a platform for my implementation is the fact that Unity provides
an Articulation Body component which can be used to construct and precisely simulate
kinematic chains. The Articulation body component is an integration of the Articulations
feature in PhysX, an object-oriented implementation of Featherstone’s algorithm that I
used for comparison to evaluate the correctness of my data-oriented implementation.

5.1.1 DOTS

The Data-Oriented Technology Stack (DOTS) provided by Unity is a collection of tech-
nologies and tools focused on enabling the development of performant data-oriented code.
Its main component is the archetype-based Entity, Component, System (ECS) framework

"https://unity.com
’https://unity.com/dots
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which stores data in memory in a way that enables performant access and processing of
this data. The basic building block of ECS is an entity. All entities can have different
components storing a specific set of data attached to them. All entities with the same
set of components form an archetype which is saved contiguously in memory. The con-
tiguous storage of related entities enables performant loading and processing of their data
by the logic defined in systems. Data storage and data access patterns are key to achiev-
ing high performance on modern computers which are limited by the memory bandwidth
as explained in further detail in chapter 4. Maintaining optimised storage of entities in
memory and their fast access is handled by Unity’s ECS framework. All a user has to
do is create entities, add components to them and query for them in systems to read and
modify their data. Despite the ECS framework simplifying the data-oriented development
process, the developer must adapt to this quite different way of programming compared to
object-oriented programming. The developer must also understand how ECS works under
the hood to leverage its full power and not result in even worse performance than with an
OOP solution.

The second big component of DOTS is the Burst compiler which translates IL/.NET
bytecode into optimised native CPU code by using the LLVM compiler. It can target
many different platforms without requiring the programmer to write platform-specific code.
Thanks to the restrictions and organisation of data in memory provided by the ECS frame-
work the Burst compiler can increase the performance of a simulation by up to several
orders of magnitude by simply flipping a switch in the settings. The Burst compiler is
capable of automatically vectorizing code i.e. performing multiple computations in one in-
struction thanks to intrinsic SIMD instructions, inlining of functions (removing the call to
a function and directly executing the function’s body) and memory access optimizations.

The last major part of DOTS is the C# job system. Within systems in ECS one
can write code directly in the system’s OnUpdate method or in a job that is then run
on a main thread or scheduled to run on one or multiple worker threads. Initially, I
started implementing the logic for the first pass of the algorithm directly in the OnUpdate
method of the FeatherstoneSystem as it made the access of data a little easier and I could
focus primarily on the implementation of the algorithm itself. Later on, when I got more
comfortable with DOTS I implemented the second and the third pass of the algorithm in
their own jobs which makes it easy to schedule them to run in parallel on multiple worker
threads. This means that multiple kinematic chains in a scene will be processed partially
in parallel, which is faster than if they were all processed sequentially on the main thread.

5.1.2 Numerics library

The implementation of Featherstone’s algorithm involves a lot of 3x3 and 6x6 matrix and
vector operations. Luckily, I had the possibility to use an internally developed highly per-
formant numerics library at Unity that includes common linear algebra operations. This
library is compatible with DOTS and also leverages the Burst compiler to maximise per-
formance. Because this is a low-level library optimised for performance it requires the
developer to manually allocate a fixed amount of memory at the beginning of the simula-
tion from which chunks of memory are later used to store the vectors and matrices that are
being processed. This restriction forces the programmer to evaluate the maximum amount
of memory that will be needed for the processing of the data structures at any given time
in the simulation.
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5.2 Structure

My implementation of Featherstone’s algorithm is split between two systems, one type of
entities representing the links in a kinematic chain and several components for storing the
necessary data. In total, the implementation is under about 1000 lines of code, but it
took me about half a year and an extension to the original deadline to complete. This
thesis took me so long to complete because I had to familiarise myself with the required
physics concepts, get used to this type of scientific literature, and familiarise myself with the
numerics library and the whole data-oriented technology stack that was being finished and
fully released during the work on my thesis. When it came to the details of DOTS, I was also
often dependent on help from the Unity physics team, which is dispersed across multiple
locations with different time zones, adding to the development process’s complexity.

5.2.1 Entities

Each link in a kinematic chain is an entity in my simulation. Joint data is attached as a
component on the inboard link and its index corresponds to the outboard link following
Featherstone’s and Mirtich’s indexing convention. The last link in a chain does not hold
joint data, therefore there are two archetypes in my simulation the links that do and the
links that do not have the RevoluteJoint component.

5.2.2 Components

The two components that store most of the data are the Link component and the RevoluteJoint
component. Most of the physical quantities that appear in the equations in Miritch’s
pseudo-code are stored in these two components. In order to store the 6-dimensional vec-
tors and matrices they had to be broken down to float3 and float3x3 types as these

are the highest dimension types supported by the Unity.Mathematics library. To perform
operations such as vector-matrix multiplication in 6 dimensions, the matrix must be first
constructed within the preallocated heap of memory and its four quadrants are initialised by
loading the data from the 3x3 floats from the corresponding component. After performing

the necessary computations, the result is persisted by loading the data from the temporary
heap of memory back into a field of a component belonging to the corresponding link.

5.2.3 Systems

There are two systems in the simulation. The first system is the ChainBuildingSystem
which is run once at the beginning of the simulation and initialises a chainedEntitiesBuffer
on each stationary base link (one per kinematic chain in a scene). This circumvents the
limitations of the ECS framework and provides me with a way to traverse the kinematic
chain in both directions i.e. from base to tip and from tip to base as required by the algo-
rithm. To enable the construction of this buffer the developer has to manually specify the
successor of each link in the RevoluteJointAuthoring component while creating a scene
for the simulation which resembles a singly linked list. The kinematic chain is traversed
in the ChainBuildingSystem and a buffer with random access to entities in the chain is
created and stored on the base link of each kinematic chain in the scene for use in the actual
simulation.

The second system is called the FeatherstoneSystem and it contains the implemen-
tation of the algorithm itself. Before implementing this system I first created a detailed
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breakdown of the algorithm presented in chapter 3 and hand-computed a single iteration of
each pass of the algorithm to understand how it works and have some initial values I could
use for debugging. The first pass of the algorithm is implemented in the systems OnUpdate
method and it uses an idiomatic foreach to query for and iterate through the base links of
all kinematic chains in the scene. Each kinematic chain is traversed using the Successor
field in the RevoluteJoint component starting from the base links. The computations of
the velocities, the Coriolis force and the initialisation of the articulated zero acceleration
force along with the articulated inertia are done during the traversal. The second and
third passes are implemented as jobs that are easily parallelizable and they compute the
articulated zero acceleration force, articulated inertia and the acceleration of each link and
joint.

5.3 Used Conventions

In order to be able to effectively develop, debug and review the code I decided to use
certain naming conventions and utilise comments throughout the code to make it easier
to map the code to the hand-computed calculations. Very often the computed quantities
have an index written in subscript that is either ¢ or ¢ — 1 because it is not possible to
use the minus sign in the name of C# variables I use the suffix _current instead of ¢ and
_previous instead of i — 1. An exception to this rule are variables that do not represent a
mathematical expression and their names are not combined with other variable names such
as currentLink. I generally tried to name the variables either with the name of the quantity
that they represent such as AngularAcceleration or with a name that is close to how
the computed expression would be written in IATEX such as s_i_prime_I_i_articulated
resembling §;f;4 I have separated the code for each pass into sections using comments
describing what each section is computing to make it easier to find in the pseudo code and
the hand-computed breakdown of the algorithm.

5.4 Debugging

For a long time during the implementation, there was no visual result that could be verified.
Therefore, the only way to continuously check the correctness of the code was to hand-
compute the algorithm and then compare the intermediate results with the results on paper.
Towards the end of the development process, it was finally possible to visually evaluate if
the algorithm was implemented correctly. Of course, after the first run with the enabled
visualization, it was not working as expected. After extensive code review and debugging
the results looked almost correct, but it was still visible that there is energy being injected
into the system and it was not behaving naturally. I accomplished to find the mistakes in
the first iteration of each pass and within the first frame of the simulation, this is what I
had hand-computed reference values for.

It would not be practical to hand-compute the values of further iterations for each
link in the chain so I utilised the fact that Unity has an object-oriented implementation
of Featherstone’s algorithm in the form of the Articulation Body component. With the
help of Unity’s physics team, I built the Unity editor along with PhysX in debug mode
which enabled me to step through the PhysX code while the Unity editor was running my
simulation. A scene containing two equivalent kinematic chains composed of three links
was made. One of them was simulated using my implementation and the other one using
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the built-in Articulation Body components powered by PhysX. To locate further bugs in
the code I thoroughly stepped through both my implementation and the implementation
of PhysX to see where the intermediate results start diverging. I used these insights to
eliminate the remaining bugs in the code and achieve equivalent results to PhysX but in with
a data-oriented implementation. The following chapter 7?7 compares my implementation
with the PhysX implementation in more detail and presents the results of the performed
tests.
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Chapter 6

Testing

A series of tests were carried out to evaluate the performance of the data-oriented imple-
mentation of Featherstone’s algorithm developed as a result of this thesis. The setup and
the results of each test are described in this chapter. Each test measures and compares
either the accuracy, energy conservation or performance of my implementation against
the equivalent feature of the PhysX physics engine called ,Articulations“. This feature
was used through the ,,Articulated Body* component in Unity which is a wrapper around
»Articulations® in PhysX. Specifically, PhysX 4.1 was chosen for comparison as it is inte-
grated into Unity which makes the testing process easier. An important fact is that the
»Articulations® feature for the simulation of articulated bodies is powered by an object-
oriented implementation of Featherstone’s algorithm which enables this comparison of my
data-oriented implementation against an object-oriented one.

Both PhysX and my implementation use Euler’s integration method. In all the tests
except one a time step of 1/60 (0.01666) of a second was used. In one test a four times
smaller time step 1/240 (0.004166) of a second was used which led to a much more stable
simulation of a double pendulum.

6.1 Accuracy and Energy Conservation

To measure the accuracy and energy conservation of the simulations performed with the
data-oriented implementation of Featherstone’s algorithm two types of scenes were used.
One type contained a kinematic chain set up as a single pendulum with a static base link
and one dynamic link attached to the base by a revolute joint as seen on the left side of
Figure 6.1. The second type of scene contained a double pendulum with a static base and
two dynamic links as seen on the right side of Figure 6.1. The joints were simulated as ideal
joints with no friction and the experiment was assumed to be in vacuum with a constant
gravitational force.

Each test scene contained two copies of the same kinematic chain in a single or double
pendulum configuration, one copy driven by an OOP and the other driven by a DOD
implementation of the algorithm. These chains were often placed at the same overlapping
location to enable an easier visual inspection of differences in their motion. An orthographic
camera looking in the direction of the z-axis was used in all the test scenes for easier visual
evaluation of the correctness of the simulations.

Data about the world space angular displacement of each link in the kinematic chain
from its equilibrium position was collected at each step of the simulation. On top of this
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Figure 6.1: Screenshot of the single and double pendulum used for testing.

data, the kinetic, the potential and the total mechanical energy was also recorded after each
step. To be able to compare data from simulations using different time steps the elapsed
simulation time was recorded after each step of the simulation. The elapsed simulation
time ¢ was computed as follows using the current step number n and the time step At:

t = nAt

In each of the following tests, a pendulum was simulated starting either from equilibrium
and expected to remain there as seen on the left side of figure 6.2 or was displaced to a
smaller angle of 45° or a bigger angle of 135° to test the qualities of the implemented solver.
To exemplify this, the right side of Figure 6.2 depicts the trajectory of a single pendulum
being dropped from an angular displacement of 45°.

Figure 6.2: A single pendulum in equilibrium on the left and a visualisation of its motion
after being displaced to 45°.

6.1.1 Single Pendulum 0°

In the first test, a single pendulum started in its equilibrium position and over the duration
of the test was examined if it would stay there. In Figure 6.3 it is visible on the left chart that
at first glance the pendulum exhibits no movement. After a more thorough examination
of the zoomed chart on the right side it can be seen that the reference implementation of
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PhysX produces a completely steady and correct result as opposed to my implementation
which has a small amount of noise. This noise could be due to an implementation mistake
or simply a trick that I have not used compared to PhysX.
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Figure 6.3: Plot of the angular displacement of the first link in the kinematic chain.

At first glance, both simulated systems seem to maintain a stable total amount of
mechanical energy on the left chart in Figure 6.4. After examination of the right chart of
the same figure, we can see that this is true but the constant amount of energy is slightly
lower for my data-oriented implementation.
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Figure 6.4: Plot of the total mechanical energy of the kinematic chain.

The kinetic energy of the system simulated with the data-oriented implementation is
zero as expected and the potential energy is equal to the total mechanical energy of the
system as seen in Figure 6.5. The results of this test were the same for the PhysX imple-
mentation but are not shown in Figure 6.5 to maintain clarity as all the values overlap.
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Figure 6.5: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.2 Single Pendulum 45°

The second test with a single pendulum had a small initial angular displacement of the
dynamic link of 45° from its equilibrium position. In this test, both the PhysX and my
simulation yielded the same angular displacement of the dynamic link over time as seen in
Figure 6.6. The displacement perfectly overlaps at the start and the end of the simulation
as seen on the left and right chart respectively.
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Figure 6.6: Plot of the angular displacement of the first link in the kinematic chain.

Both systems seem to maintain constant total mechanical energy when inspecting the
left chart in Figure 6.7, but after having a closer look at the right chart it is visible that the
energy of both systems oscillates around the initial value. Interestingly, the energy of the
data-oriented implementation oscillates with approximately three times higher amplitude.
This observation can indicate an error in the DOD implementation and an area that could
be further examined during future work.
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Figure 6.7: Plot of the total mechanical energy of the kinematic chain.

Over all the total mechanical energy, the kinetic energy and the potential energy of both
systems over time is very similar but not identical as seen in Figure 6.8. These differences
are not significant enough to result in visual artefacts visible by the naked eye during
this test but are symptoms that are much more prominent in the tests featuring a double

pendulum.
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Figure 6.8: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.3 Single Pendulum 135°

The starting configuration of this test was a single pendulum with an initial angular dis-
placement of its dynamic link of 135° from equilibrium to test how stable the simulation
would be in more extreme conditions. Figure 6.9 shows that both my implementation and
the implementation of PhysX produced very similar results throughout the entire lifetime of
the simulation. Even though the results seem similar in the charts, they are not completely



identical. In fact, the average absolute difference between the displacement data from both
simulations is 0.067333 degrees.
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Figure 6.9: Plot of the angular displacement of the first link in the kinematic chain.

In this test with a higher initial angular displacement it is possible to see quite easily
that the total mechanical energy of neither of the systems was constant as seen in Figure
6.10. Again, notice the higher amplitude of the energy of the data-oriented system. This
is likely a symptom of an error in the implementation.
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Figure 6.10: Plot of the total mechanical energy of the kinematic chain.

The absolute difference between the energies of both systems was not very big as seen
in Figure 6.11.
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Figure 6.11: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.4 Double Pendulum 0°

All the single pendulum tests gave stable and quite accurate results when compared to the
reference results of PhysX. This and the following tests use a double pendulum, meaning
a mechanical configuration of two dynamic links chained together hanging of a static base
as depicted earlier in Figure 6.1.

The first test with a double pendulum checks if a hanging pendulum remains in the
state of equilibrium and examines if the mechanical energy in the system remains constant.
From Figure 6.12 it is visible that the angular displacement of the first dynamic link in the
chain is not constant and there is a small increasing amount of noise. This noise is more pro-
nounced than the one in the single pendulum 0° test. The angular displacement noise being
more significant in the double pendulum indicates that the error in the implementation is
amplified by adding more links to the kinematic chain.
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Figure 6.12: Plot of the angular displacement of the first link in the kinematic chain.
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The angular displacement from equilibrium of the second dynamic link in the kinematic
chain is even more significant than the one of the first link as seen in Figure 6.13. The
highest absolute error is less than 0.00025 of a degree which does not result in any visual
differences between the two chains, but could be a clue for future debugging.
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Figure 6.13: Plot of the angular displacement of the second link in the kinematic chain.

Both the PhysX and my implementation seems to keep constant mechanical energy over
the time of the simulation as they are expected to. After a closer inspection of the level
of constant energy in figure 6.14 the one of the data-oriented implementation is lower by
about 0.0001 of a Joule which could be a consequence of the small difference in angular

displacement.
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Figure 6.14: Plot of the total mechanical energy of the kinematic chain.

Both implementations produce very similar results and no major differences in energy
conservation are visible as seen in Figure 6.15.

49



Double Pendulum 0° - Energy Conservation

125 — mes [PhysX] Total
== == [Ours] Total
100 —+ [PhysX] Kinetic
== == [Ours] Kinetic
) )
g 75 4+ s [PhysX] Potential
2 w= == [Ours] Potential
>
5 50 +
[0}
c
wi
25 +
or+———t-+r -t
0 50 100 150

Time (seconds)

Figure 6.15: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.5 Double Pendulum 45°

In this test, a double pendulum was simulated with an initial angular displacement of 45°
from equilibrium and after approximately 70 simulation seconds it ended up spinning out
of control producing ,,NaN“ values and the energy of the system kept raising exponentially.

During the first 10 seconds of the simulation, the angular displacement of the first link
was very similar between PhysX and my implementation as seen in Figure 6.16. Afterwards,
the differences kept increasing more and more until the pendulum ended up spinning around.
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Figure 6.16: Plot of the angular displacement of the first link in the kinematic chain.

The differences between the angular displacement of the second link in the kinematic
chain by each implementation were a little more significant as seen in Figure 6.17.

Interestingly, the total mechanical energy of both systems was rising over time, even
the one of the system simulated by PhysX. It is known that PhysX performs best with a
small amount of joint friction, but in all of these tests, zero friction was used. Nevertheless,
the total mechanical energy of the system simulated with my implementation was rising at
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Figure 6.17: Plot of the angular displacement of the second link in the kinematic chain.

a higher rate than the one simulated with PhysX and started exponentially growing after
approximately 50 seconds of simulation time as seen in Figure 6.18.
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Figure 6.18: Plot of the total mechanical energy of the kinematic chain.
In Figure 6.19 it is visible that the kinetic energy of my implementation keeps rising

where the potential energy reaches a top limit as expected, due to the limited distance that
the links can reach away from the first joint.
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Figure 6.19: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.6 Double Pendulum 135°

In the most extreme test of the double pendulum, it was displaced 135° from its equilibrium
state and the pendulum simulated with my implementation became unstable much faster
than in the previous test where the pendulum started displaced at a 45° angle. In Figure
6.20 we can see that the first link starts spinning around after 8 simulated seconds whereas
in the previous test, it took about 50 seconds which is more than 6 times longer.
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Figure 6.20: Plot of the angular displacement of the first link in the kinematic chain.

We can see much more movement of the second link through the whole simulation it
also starts spinning around its joint much sooner as seen in figure 6.21.
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second link in the kinematic chain.

In the charts of the mechanical energy of the system we can see that the energy starts
increasing exponentially already after 8 to 9 seconds of the simulation as seen in figure 6.22.
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Figure 6.22: Plot of the total mechanical energy of the kinematic chain.

The kinetic and potential energy behaves similarly to the previous test, the kinetic
energy keeps growing and the kinetic increases the oscillation frequency over time as seen
in Figure 6.23.
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Figure 6.23: Plot of the total, kinetic and potential energy of the kinematic chain.

6.1.7 Double Pendulum 135° (Smaller Time Step)

In the previous and most extreme test of the double pendulum, the mechanical system
became unstable after 8 seconds of simulation. In this test, the same starting configuration
was used but the simulation step was lowered from 1/60 of a second to 1/240 of a second
which led to great improvements in stability and accuracy of the simulation. In fact, the
mechanical system remained stable over the entire lifetime of the simulation which was over
50 seconds of simulation time as seen in Figure 6.24. From the figure it is clearly visible that
the accuracy has largely improved as the angular displacement of the first link simulated
with my implementation closely follows the one of the first link simulated with PhysX.
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Figure 6.24: Plot of the angular displacement of the first link in the kinematic chain.

The second link in both kinematic chains did spin around sometimes as visible in Figure
6.25 which is expected of a double pendulum dropped from this height. Importantly the

system remained stable.
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Figure 6.25: Plot of the angular displacement of the second link in the kinematic chain.

The total mechanical energy of both systems is far from constant where my implemen-
tation produced more turbulent oscillations in the energy graph. A big positive change is
that in almost a six times longer simulation the energy of the data-oriented implementa-
tion did not grow uncontrollably and stayed within a much lower range of values as seen
in Figure 6.26. This was expected as the smaller simulation step results in less numerical
error and more precise simulation. It is to be investigated in future work why the energy
in the system simulated by PhysX remains more stable and even decreases over time.
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Figure 6.26: Plot of the total mechanical energy of the kinematic chain.

The kinetic energy of the data-oriented system is much closer to the one of the system
simulated with PhysX as seen in Figure 6.27 if compared to the previous test with a bigger
time step. It would be interesting to examine how much better the results can get with an
even smaller time step. This could indicate if the error of my implementation is related to
integration or lies elsewhere.
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Figure 6.27: Plot of the total, kinetic and potential energy of the kinematic chain.

6.2 Execution time

Another interesting aspect of the quality of the data-oriented implementation is its perfor-
mance in comparison to PhysX which is implemented in an object-oriented way. Due to
a lack of time, the performance tests were not as comprehensive as the accuracy tests as
it was deemed more important to collect more data about the correctness and accuracy of
the implementation that could serve as clues for future debugging.

The performance was measured by recording the difference between the time since
the startup of the simulation before and after computing the PhysX simulation step and
before and after the data-oriented simulation step. It is not an entirely fair comparison
as the PhysX implementation does check for collisions and has overall more overhead due
to its more complete feature set. The Unity physics simulation mode was switched to
SimulationMode.Script which enabled a manual control of the physics simulation and
contributed to recording as correct testing data as possible.

The final performance test was carried out in the scene with the double pendulum
displaced to 135° and using the smaller time step to prevent the simulation from ending
prematurely. This scene was chosen as it features two dynamics links that require the
utilisation of the full algorithm for recursively traversing the chain.

In terms of the testing details, the internal Unity editor 2023.3.0al was used as it is very
close to the latest version of the editor and features the newest features and optimisations.
The editor was switched into ,Release“ mode from the default ,Debug® mode which can
hinder performance. The performance was measured both with having Burst compilation
enabled and disabled. In the case of enabled Burst compilation, safety checks that are useful
for debugging but hinder performance were turned off. As there is a certain ,warm-up*
time for both PhysX and the data-oriented implementation the first 100 and the last 100
data points were discarded to eliminate outliers.

The performance test was conducted on a Dell XPS 15 9510 laptop while being connected
to a power supply and an external 4k monitor. All unnecessary applications were closed
and both the test with enabled and disabled Burst compilation were performed right after
each other to ensure that the computer was in as similar state as possible during both of
the tests. A more detailed technical specification of the used laptop is described in the
table 6.1.
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Laptop model | Dell XPS 15 9510 (Windows 10 Pro)

GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU

CPU 11th Gen Intel(R) Core(TM) i9-11900H @ 2.50GHz - 8 Cores
RAM 2 x 32 GB DDRA4, 3200 MHz

Table 6.1: Testing machine technical parameters.

In Figure 6.28 it is visible how with both Burst compilation being disabled and enabled
the data-oriented implementation outperformed PhysX’s object-oriented implementation.
As stated earlier this is not a perfect comparison but was made as fair as possible.
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Figure 6.28: The recorded run times of each simulation step for a double pendulum.

In summary, the developed data-oriented implementation was a little over 5 times faster
than PhysX without Burst compilation being turned on. After enabling Burst compilation,
the data-oriented implementation was over 10 times faster than PhysX’s object-oriented im-
plementation as seen in Figure 6.29. This indicates that the data-oriented implementation
has the potential to become a competitive solution after more debugging and optimisation.
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Figure 6.29: Comparison of the average time to compute a simulation step by PhysX’s
object-oriented and my data-oriented implementation of Featherstone’s algorithm*.

*In the case of PhysX, Featherstone’s algorithm was not measured in complete isolation
due to technical limitations and a lack of time. However, the testing scene contained only
the two kinematic chains necessary for the test to keep the comparison as fair as possible
by preventing PhysX from simulating the motion or collisions of any unrelated bodies.

On the other hand, it was out of the scope of this thesis to do almost any optimization
of the data-oriented implementation and the focus was mainly on getting a first working
prototype. Therefore, there may be a lot of room for improvement.
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Chapter 7

Discussion and Future Work

The main focus of this thesis was to assess the feasibility, performance and accuracy of
implementing Featherstone’s algorithm using a data-oriented design facilitated by the ECS
framework within Unity’s Data-Oriented Technology Stack. The performance testing re-
vealed a clear advantage of the data-driven approach over the object-oriented alternative.
As expected, the data-oriented implementation outperformed the object-oriented counter-
part, showing performance gains of up to tenfold. This performance improvement is likely
due to the exploitation of efficient data storage and access patterns maximising cache effi-
ciency along with vectorization of instructions.

However, it is evident that there is a disparity in the accuracy of the data-oriented
implementation and the implementation of PhysX which becomes visible in the simulation
of a double pendulum. Even after extensive debugging and comparisons of the data-oriented
implementation of the pseudo-code in literature and the open-source PhysX code, it remains
to be discovered why the data-oriented implementation produces different results from
PhysX and more importantly results that are not realistic nor believable, at least at the
standard times step used by PhysX in Unity (1/60 of a second). The collected data may
give multiple clues as to where the issue may be.

Besides improving the accuracy there are many natural extensions that could be made
to the data-oriented implementation. Little time has been devoted to optimising the code
so there are likely many performance gains which can be tapped into. In terms of features
and functionality, the algorithm can be extended from kinematic chains to kinematic trees
and even ones with a floating base as described by Mirtich [1]. Another important feature
that could be added for interactive simulations is contact handling and collision detection.
Since Unity’s DOTS is used, concurrency can be easily and safely exploited for simulating
multiple kinematic trees in a scene in parallel by leveraging the job system.

In terms of future testing opportunities, it would be valuable to measure the perfor-
mance and accuracy of the implementation on motorised articulated bodies such as robotic
manipulators. The current implementation does support motorised joints, but exerting
non-zero torques by the joint motors has not been formally tested.

Another interesting test would be to measure how the performance scales with the
length of the kinematic chain and with the number of kinematic chains within one scene.
Especially, there could be a big difference in performance scalability if the simulation jobs
were run in parallel on different threadas by exploiting the power of Unity’s job system.
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Chapter 8

Conclusion

Within this thesis, a first-of-its-kind purely data-oriented implementation of Featherstone’s
algorithm was developed in C# leveraging Unity’s Data-Oriented Technology Stack. The
performance and accuracy of the data-oriented implementation were compared to PhysX 4.1,
a popular physics engine integrated into Unity. This was evaluated in a series of seven accu-
racy tests and one performance test. Accuracy was favoured in the testing process as it was
deemed a higher priority to check the correctness of the implementation before engaging
in further optimisation and performance tests. Testing showed that by simulating single
pendulums with different initial angular displacements the accuracy was almost identical to
PhysX. However, when double pendulums were tested with a time-step of 1/60 of a second
the mechanical system gained energy over time instead of maintaining constant energy.
The accuracy of the double pendulum tests was visibly lower and the resulting motion was
different from PhysX. A lower time step of 1/240 of a second significantly improved the
accuracy and stability of the simulated double pendulum. The lower accuracy of the double
pendulum tests is likely due to a small error in the implementation. It was expected that a
data-oriented implementation could perform better than an object-oriented one. However,
the measured performance of the data-oriented implementation surpassed expectations and
proved to be ten times faster than PhysX’s simulation step. This indicates that this work
is worth continuing as a competitive solution could be on the horizon.

Besides developing a data-oriented implementation of Featherstone’s algorithm this the-
sis provides extra details about the algorithm to help successors understand and implement
this algorithm. Furthermore, the data-oriented paradigm was introduced along with var-
ious resources for further reading. Future work could focus on locating the error in the
implementation using the collected data to address the accuracy issues. The implementa-
tion can also be extended from kinematic chains to kinematic trees and even ones with a
floating base quite easily. Incorporating a response to collisions is also an interesting area
for future exploration. Future work could also focus on testing how the performance scales
with a higher number of links and kinematic chains in a scene. Tests involving non-zero
joint actuator torques would be interesting to see as these are currently supported but were
not formally tested.
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